

Министерство образования и науки Республики Казахстан Казахский Национальный университет им. аль-Фараби Механико-математический факультет

Исследование и разработка алгоритмов магнитной ориентации малого космического аппарата

РhD докторант: Калиева Н.Б. Научный консультант: к.ф.-м.н., доцент, Ракишева З.Б. (КазНУ им. аль-Фараби) Зарубежный научный консультант: PhD, профессор, Шиничи Накасукэ (Токийский университит)

ОБЪЕКТ ИССЛЕДОВАНИЯ:

Система ориентации является одной из основных служебных подсистем космического аппарата (КА), которая обеспечивает его стабилизацию и ориентацию в заданном направлении в процессе полета.

АКТУАЛЬНОСТЬ ТЕМЫ ИССЛЕДОВАНИЯ

Основные характеристики МКА:

- Малые размеры (до метра);
- Малая масса (1-100 кг);
- Попутный или конверсионный запуск;
- Относительная невысокая стоимость (простейшие спутники от 50 тыс. \$ US, сложные десятки миллионов \$ US);
- Ограничение на использование механических исполнительных органов;
- В большей степени подвержены к внешним возмущениям.

Возмущающие моменты	PRISM (8,5 кг)	ASUKA (420 кг)
Гравитационный момент	8*10^(-7) Н*м	1*10^(-3) Н*м
Аэродинамический момент	3*10^(-8) Н*м	1*10^(-4) Н*м
Момент солнечного давления	1*10^(-8) Н*м	4*10^(-5) Н*м
Остаточный магнитный момент	3*10^(-6) Н*м	5*10^(-5) Н*м

АКТУАЛЬНОСТЬ ТЕМЫ ИССЛЕДОВАНИЯ

Остаточный магнитный момент

Оценка величины остаточного магнитного момента КА Nano-JASMINE (Т. Inamori и др. 2011)

Тип	Источник возникновения	Величина (А*м^2)
Постоянный магнитный момент	Магнитные материалы и электрические контуры	1*10^(-1)
Магнитный момент, зависящий от орбитального периода	Изменение электрического сопротивления Нагреватель Солнечные батареи	1*10^(-3) 1*10^(-4) 6*10^(3)
Магнитный момент, зависящая от периодичности управления	Электронная схема (устройство, преобразующее выходной аналоговый сигнал в цифровой сигнал) Электронная схема (маховики) Электронная схема (система энергоснабжения)	1*10^(6) 1*10^(5) 3*10^(3)
Другие	ЭМИО Маховики Приемо-передатчики	2*10^(6) 1*10^(4) 1*10^(3)

АКТУАЛЬНОСТЬ ТЕМЫ ИССЛЕДОВАНИЯ

Магнитная система ориентации

Основные характеристики магнитной системы ориентации		
Преимущества	Недостатки	
НадежностьОтсутствие подвижных частейМалая степень деградации	Сложность достижения трехосной ориентации КА	
Относительная невысокая стоимость	Необходимость учета переменности геомагнитного поля	
Малое энергопотребление		

ЦЕЛЬ ИССЛЕДОВАНИЯ:

Разработка алгоритмов демпфирования угловой скорости и управления ориентацией малого космического аппарата (МКА) с помощью активных электромагнитных исполнительных органов при наличии остаточного магнитного момента.

ЗАДАЧИ ИССЛЕДОВАНИЯ:

1. Оценка влияния остаточного магнитного момента на алгоритм стабилизации угловой скорости МКА;

2. Разработка закона управления ориентацией малого космического аппарата на основе линейного ПД-регулятора для компенсации остаточного магнитного момента;

3. Разработка закона управления ориентацией малого космического аппарата на основе скользящего режима для компенсации остаточного магнитного момента.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ МАЛОГО КОСМИЧЕСКОГО АППАРАТА S_x

Динамика и кинематика МКА

$$\begin{split} \omega_{bix}^{b} &= \frac{1}{I_{x}} \Big[(I_{y} - I_{z}) \omega_{biy}^{b} \omega_{biz}^{b} + M_{grav_{x}}^{b} + M_{es_{x}}^{b} + M_{res_{x}}^{b} \Big] & \dot{q}_{0_{bo}} = \frac{1}{2} \Big(-\omega_{bo_{x}}^{b} q_{1_{bo}} - \omega_{bo_{y}}^{b} q_{2_{bo}} - \omega_{bo_{y}$$

 $\vec{q}_{bo} = [q_{0_{bo}}, q_{1_{bo}}, q_{2_{bo}}, q_{3_{bo}}] \xrightarrow{\text{смоменты инерции МКА}}$

 $M_{grav_x}, M_{grav_y}, M_{grav_z}$ $M_{a_x}, M_{a_y}, M_{a_z}$

 $M_{res_x}, M_{res_y}, M_{res_z}$

- компоненты гравитационного момента

 E_{x}

- компоненты управляющего магнитного момента

- компоненты остаточного магнитного момента

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ МАЛОГО КОСМИЧЕСКОГО АППАРАТА

(3)

Действующие моменты

Внешние моменты

Гравитационный момент

$$\overline{M}_{grav} = 3\omega_0^2 \begin{bmatrix} 2(I_z - I_y)(q_2q_3 + q_0q_1)(1 - 2(q_1^2 + q_2^2)) \\ 2(I_x - I_z)(1 - 2(q_1^2 + q_2^2))(q_1q_3 + q_0q_2) \\ 4(I_y - I_x)(q_1q_3 + q_0q_2)(q_2q_3 + q_0q_1) \end{bmatrix}$$

Остаточный магнитный момент

$$\vec{m}_{res} = [m_{res_x}, m_{res_y}, m_{res_z}] \quad (4)$$
$$\vec{M}_{res} = \vec{m}_{res} \times \vec{B} \qquad (5)$$

Управляющие моменты

Магнитный момент

$$m_a = [m_{a_x}, m_{a_y}, m_{a_z}]$$
 (6)

$$\overrightarrow{\mathbf{M}_{a}} = \overrightarrow{m}_{a} \times \overrightarrow{B}$$
(7)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ МАЛОГО КОСМИЧЕСКОГО АППАРАТА

Магнитное поле Земли

$$\vec{B} = \mu_0 \vec{H} \tag{8}$$

$$\vec{H} = -\nabla V \tag{9}$$

$$V(r,\theta,\varphi) = R \sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^{n} \left[g_n^m \cos(m\varphi) + h_n^m \sin(m\varphi)\right] P_n^m(\theta)$$
(10)

$$H_{r} = -\frac{\partial V}{\partial r} = \sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} (n+1) \sum_{m=0}^{n} \left[g_{n}^{m} \cos(m\varphi) + h_{n}^{m} \sin(m\varphi)\right] P_{n}^{m}(\theta),$$

$$H_{\theta} = -\frac{1}{r} \frac{\partial V}{\partial \theta} = -\sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^{n} \left[g_{n}^{m} \cos(m\varphi) + h_{n}^{m} \sin(m\varphi)\right] \frac{\partial P_{n}^{m}(\theta)}{\partial \theta},$$

$$H_{\varphi} = -\frac{1}{r \sin \theta} \frac{\partial V}{\partial \varphi} = -\frac{1}{\sin \theta} \sum_{n=1}^{k} \left(\frac{R}{r}\right)^{n+2} \sum_{m=0}^{n} \left[-mg_{n}^{m} \sin(m\varphi) + mh_{n}^{m} \cos(m\varphi)\right] P_{n}^{m}(\theta),$$
(11)

$$\overrightarrow{B^o} = R_b^o \overrightarrow{B^b}$$
(12)

() r, θ, φ - сферические координаты МКА в ИСК

 $R = 6371.2 \cdot 10^3 M$ - средний радиус Земли

 $g_n^m h_n^m$ - коэффициенты модели МПЗ IGRF

 $\mu_0 = 7.9 \times 10^{15} B \delta \cdot M$ - напряженность магнитного поля

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ МАЛОГО КОСМИЧЕСКОГО АППАРАТА

Характеристики МКА

<i>x</i> = 2804.7 <i>км</i>		
y = 5065.2 к <i>м</i>	$I_{\rm x} = 0.0505$	$\kappa_{\mathcal{E}} \cdot \mathcal{M}^2$
z = 4157.7 км	$I_{y} = 0.0505$	$\kappa_{\mathcal{E}} \cdot \mathcal{M}^2$
$v_x = 3.23 \kappa M / c$	$I_z = 0.0109$	$\kappa_{\mathcal{E}} \cdot \mathcal{M}^2$
$v_y = 3.07 \kappa M / c$		
$v_z = -5.99 \text{km} / c$		

Высота орбиты МКА 600 км, период одного витка орбиты 6024 с

1. ОЦЕНКА ВЛИЯНИЯ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА НА АЛГОРИТМ СТАБИЛИЗАЦИИ УГЛОВОЙ СКОРОСТИ МКА

Алгоритм стабилизации угловых скоростей МКА – «B-dot»

$$\vec{m} = -K_d \dot{\vec{B}}_i \tag{1.1}$$

 $\dot{B}_{i,k} \approx \frac{B_{i,k} - B_{i,k-1}}{\Lambda t} \qquad (1.2)$

Алгоритм стабилизации угловых скоростей МКА – «B-dot bang-bang»

$$\vec{m} = -m_{\max} \begin{pmatrix} sign(\dot{B}_x) \\ sign(\dot{B}_y) \\ sign(\dot{B}_z) \end{pmatrix}$$
(1.3)
$$\vec{m} = \begin{cases} m_{\max} npu & \dot{\vec{B}}_i < 0, \\ -m_{\max} npu & \dot{\vec{B}}_i > 0. \end{cases}$$

Алгоритм стабилизации угловых скоростей МКА – «Follow B-field»

$$\vec{m} = m_{\max} \begin{pmatrix} -sign(\dot{B}_x) \\ -sign(\dot{B}_y) \\ \frac{1}{2} \end{pmatrix}$$
(1.4)

K_d - коэффициент управления, положительное число

 B_i - компонент вектора магнитного поля

*m*_{max} - максимальное значение магнитного момента ЭМИО

1. ОЦЕНКА ВЛИЯНИЯ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА НА АЛГОРИТМ СТАБИЛИЗАЦИИ УГЛОВОЙ СКОРОСТИ МКА

Показатели качества стабилизации алгоритмов

Показатели качества управления Алгоритмы управления	Длительность гашения угловой скорости, с	Точность стабилизации (модуль угловой скорости, рад/с) (w0=0,4 рад/с)
Алгоритм «B-dot»	9936	0,1891
Алгоритм «B-dot bang-bang»	1867	0,1891
Алгоритм «Follow B-field»	2450	0,1891

ОЦЕНКА ВЛИЯНИЯ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА НА АЛГОРИТМ СТАБИЛИЗАЦИИ УГЛОВОЙ СКОРОСТИ МКА

 $\overline{m}_{res} = [0; 0; 0]$ 6) $\overline{m}_{res} = [0,005; 0; 0]$ B) $\overline{m}_{res} = [0,05; 0; 0]$ $\Gamma) \quad \overline{m}_{res} = [0,5;0;0] \quad (A \cdot M^2)$ a) (Т. Іпатогі и др. 2011) a) б)

Рис. 1 – Изменение угловой скорости МКА с моментами инерции $I = [0,0505; 0,0505; 0,0109] \kappa^2 \cdot M^2$

B)

Рис. 2 – Изменение угловой скорости МКА с моментами инерции $I = [0,0459; 0,0328; 0,0328] \kappa^2 \cdot M^2$

Г)

1. ОЦЕНКА ВЛИЯНИЯ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА НА АЛГОРИТМ СТАБИЛИЗАЦИИ УГЛОВОЙ СКОРОСТИ МКА

a) $\overline{m}_{res} = [0; 0; 0]$ 6) $\overline{m}_{res} = [0,005; 0; 0]$ B) $\overline{m}_{res} = [0,05; 0; 0]$ Γ) $\overline{m}_{res} = [0,5; 0; 0]$ $(A \cdot M^2)$ (T. Inamori и др. 2011)

Рис. 3 – Изменение угловой скорости МКА с моментами инерции $I = [0,0017; 0,0015; 0,0020] \kappa^2 \cdot M^2$

1. ОЦЕНКА ВЛИЯНИЯ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА НА АЛГОРИТМ СТАБИЛИЗАЦИИ УГЛОВОЙ СКОРОСТИ МКА

a)
$$\overline{m}_{res} = [0; 0; 0]$$
 6) $\overline{m}_{res} = [0,005; 0; 0]$ B) $\overline{m}_{res} = [0,05; 0; 0]$ C) $\overline{m}_{res} = [0,5; 0; 0]$ (A · M^2)
(T. Inamori и др. 2011)

Рис. 5 – Изменение угловой скорости МКА с моментами инерции I = [0,4; 0,4; 0,08] $\kappa_2 \cdot M^2$

2. РАЗРАБОТКА ЗАКОНА УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА НА ОСНОВЕ ЛИНЕЙНОГО ПД-РЕГУЛЯТОРА ДЛЯ КОМПЕНСАЦИИ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА

r + e R u	P	у
$\vec{m} = \left[m_x, m_y, m_z\right]$	(2.1)	
$\overrightarrow{M} = \overrightarrow{m} \times \overrightarrow{B}$	(2.2)	
$u(t) = Ke(t) + T_d \frac{de(t)}{dt}$	(2.3)	Δ
$u_1 = -K_p^1 \Delta q_1 - K_d^1 \Delta \omega_1,$		
$u_2 = -K_p^2 \Delta q_2 - K_d^2 \Delta \omega_2,$	(2.4)	Δ
$u_3 = -K_p^3 \Delta q_3 - K_d^3 \Delta \omega_3,$		

- *R* регулятор,
- *Р* объект регулирования,
- r управляющее воздействие,
- е сигнал рассогласования, или ошибки,
- и выходная величина регулятора,
- у регулируемая величина.
- *K_d T_d* пропорциональный коэффициент, постоянная интегрирования и постоянная дифференцирования

t — время,

 $\omega_1, \Delta \omega_2, \Delta \omega_3$ - компоненты вектора отклонения текущей угловой скорости МКА от требуемой.

 $Aq_1, \Delta q_2, \Delta q_3$ - компоненты векторной части кватерниона отклонения текущей ориентации МКА от требуемой

2. РАЗРАБОТКА ЗАКОНА УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА НА ОСНОВЕ ЛИНЕЙНОГО ПД-РЕГУЛЯТОРА ДЛЯ КОМПЕНСАЦИИ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА

Оптимальный подход на базе квадратичного критерия качества

Подход базирующийся на оптимальном расположении корней характеристического уравнения замкнутой системы управления

$$\frac{dX}{dt} = A\vec{X} + B\vec{u} \qquad \vec{u} = K\vec{X} \qquad (2.5)$$

$$Im z$$

$$J(\vec{u}) = \frac{1}{2} \int_{0}^{\infty} \left[d\vec{X}^{T} W d\vec{X} + \vec{u}^{T} P\vec{u} \right] dt \qquad (2.6)$$

$$Im z$$

$$Im z$$

$$Tpe 6yemoro,$$

$$Tpe 6yemoro,$$

$$Tpe 6yemoro,$$

$$Tpe 6yemoro,$$

$$\vec{x} = \vec{X} - \vec{X}_{m} \quad \vec{u} - \text{Bektrop otknohehung tekyllero coctorghug динамической системы o}$$

$$Tpe 6yemoro,$$

$$\vec{x} = \vec{X} - \vec{X}_{m} \quad \vec{u} - \text{Bektrop otknohehung tekyllero coctorghug динамической системы o}$$

$$K = P^{-1}B^{T}R.$$

$$\vec{h}_{1} + (A - BP^{-1}B^{T}R)\vec{h}_{1} - W\vec{X}_{m} = 0$$

$$W = diag \left(\frac{1}{M_{1}^{mx}}, \frac{1}{M_{2}^{mx}}, \frac{1}{M_{2}^{m$$

2. РАЗРАБОТКА ЗАКОНА УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА НА ОСНОВЕ ЛИНЕЙНОГО ПД-РЕГУЛЯТОРА ДЛЯ КОМПЕНСАЦИИ ОСТАТОЧНОГО МАГНИТНОГО МОМЕНТА

 $I_x = 3.4278 \quad \kappa_2 \cdot M^2; I_y = 2.9038 \quad \kappa_2 \cdot M^2, I_z = 1.2750 \quad \kappa_2 \cdot M^2$

 $\varphi_{x} = 60^{\circ}; \varphi_{y} = 100^{\circ}, \varphi_{z} = -100^{\circ}, \omega_{x} = -0.002 \text{ spad/cek}, \omega_{y} = 0.002 \text{ spad/cek}, \omega_{z} = 0.002 \text{ spad/cek}, \omega_{z$

Рисунок 2.1 - Результаты моделирования орбитальной ориентации МКА при использовании ПД-регулятора для определения магнитного момента при настройке его коэффициентов с помощью оптимального подхода

Рисунок 2.2 Результаты моделирования орбитальной МКА ориентации при использовании ПД-регулятора для определения настройке магнитного момента при его коэффициентов помошью оптимального С размещения корней характеристического уравнения замкнутой системы управления

Рисунок 2.3 - Угловое отклонение от направления в центр масс Земли при использовании ПД-регулятора для определения магнитного момента

3. РАЗРАБОТКА ЗАКОНА УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА НА ОСНОВЕ СКОЛЬЗЯЩЕГО РЕЖИМА

$$\vec{S}(\overrightarrow{\Delta \omega}, \overrightarrow{\Delta Q}, t) = 0 \qquad (3.1) \qquad \overrightarrow{u_{see}} = [\overrightarrow{\omega_{bi}^{b}} \times]I \overrightarrow{\omega_{bi}^{b}} - \overrightarrow{M_{dis}} + I\overrightarrow{\omega_{T}} - \frac{1}{2} K_{q} I \left(\Delta q_{0} E + [\overrightarrow{\Delta q} \times] \right) \left(\overrightarrow{\omega_{bi}^{b}} - \overrightarrow{\omega_{T}} \right) \qquad (3.7)$$

$$\vec{S} = \overrightarrow{\Delta \omega} + K_{q} \overrightarrow{\Delta q} \qquad K_{q} > 0 \qquad (3.2) \qquad \overrightarrow{m} = \frac{\overrightarrow{u} \times \overrightarrow{B}}{\left\| \overrightarrow{B} \right\|^{2}} \qquad (3.8) \qquad \overrightarrow{M_{a}} = \frac{\overrightarrow{m} \times \overrightarrow{B}}{\left\| \overrightarrow{B} \right\|^{2}} \times \overrightarrow{B} \qquad (3.9)$$

$$\vec{u} = \overrightarrow{u_{see}} + \overrightarrow{u_{k}} \qquad (3.3) \qquad \overrightarrow{S^{*}} = \overrightarrow{\Delta \omega} + K_{q} \overrightarrow{\Delta q} + \overrightarrow{A} e^{-\alpha t} \qquad (3.10)$$

$$\vec{S} = 0, \ \overrightarrow{S} = 0 \qquad (3.4) \qquad \overrightarrow{u} = \overrightarrow{u_{see}} + \overrightarrow{u_{k}} \qquad \overrightarrow{u_{k}^{*}} = -\lambda \overrightarrow{S^{*}} \qquad (3.11)$$

$$\vec{u} = \overrightarrow{u_{see}} \qquad (3.5) \qquad \overrightarrow{u_{see}^{*}} = [\overrightarrow{\omega_{bi}^{bi}} \times]I \overrightarrow{\omega_{bi}^{b}} - \overrightarrow{M_{dis}} + I \overrightarrow{\omega_{T}} - \frac{1}{2} K_{q} I \left(\Delta q_{0} E + [\overrightarrow{\Delta q} \times] \right) \left(\overrightarrow{\omega_{bi}^{b}} - \overrightarrow{\omega_{T}} \right) + aJA e^{-\alpha t} \qquad (3.12)$$

$$\vec{u}_{k} = -\lambda \overrightarrow{S} \qquad \lambda > 0 \qquad (3.6) \qquad \overrightarrow{A} = -\overrightarrow{\Delta \omega}(t_{0}) - K_{q} \overrightarrow{\Delta q}(t_{0}) \qquad (3.13)$$

$$V = \overrightarrow{\Delta q^{T}} \overrightarrow{\Delta q} + (1 - \Delta q_{0})^{2} \qquad \overrightarrow{\Delta q} = [0,0,0], \ \overrightarrow{\omega} = [0,0,0] \qquad V = \frac{1}{2} \overrightarrow{S} (I \overrightarrow{S}) \qquad V = -\overrightarrow{S} \lambda \overrightarrow{S} < 0$$

3. РАЗРАБОТКА ЗАКОНА УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА НА ОСНОВЕ СКОЛЬЗЯЩЕГО РЕЖИМА

 $I_x = 3.4278 \quad \text{ke} \cdot M^2; I_y = 2.9038 \quad \text{ke} \cdot M^2, I_z = 1.2750 \quad \text{ke} \cdot M^2$

 $\varphi_{x} = 60^{\circ}; \varphi_{y} = 100^{\circ}, \varphi_{z} = -100^{\circ}, \omega_{x} = -0.002 \operatorname{spad/cek}, \omega_{y} = 0.002 \operatorname{spad/cek}, \omega_{z} = 0.002 \operatorname{spad/$

 $\varphi_x = 0^\circ, \ \varphi_y = 0^\circ, \ \varphi_z = 0^\circ \ \omega_x = 0.0$ град/сек, $\omega_y = 0.0$ град/сек, $\omega_z = 0.0$ град/сек

Рисунок 3.1 - Результаты моделирования орбитальной ориентации МКА при использовании управления со скользящим режимом для определения магнитного момента Рисунок 3.2 - Результаты моделирования орбитальной ориентации МКА при использовании модифицированного управления со скользящим режимом для определения магнитного момента Рисунок 3.3 - Угловое отклонение от направления в надир при использовании управления со скользящим режимом для определения магнитного момента

4. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭФФЕКТИВНОСТИ АЛГОРИТМОВ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ МАЛОГО КОСМИЧЕСКОГО АППАРАТА

Таблица 4.1. Показатели качества управления в режиме орбитальной ориентации

Таблица 4.2. Показатели качества управления в режиме поддержания орбитальной ориентации

	Длительност	Точность
	ь маневра	ориентирован
	инерциально	ия (модуль
Методы управления	й	векторной
	ориентации,	части
	с	кватерниона
		ориентации)
ПД-регулятор с настройкой	150	0.0044
коэффициентов с помощью		
оптимального расположения корней		
характеристического уравнения		
замкнутой системы управления		
Управление со скользящим режимом	150	0.0088
Модифицированное управление со	150	0.0048
скользящим режимом		

Методы управления	Длительность маневра инерциальной ориентации, с	Точность ориентировани я (модуль векторной части кватерниона ориентации)
ПД-регуляторснастройкойкоэффициентовспомощьюоптимальногорасположениякорнейхарактеристическогоуравнениязамкнутой системы управления	260	0.004
Управление со скользящим режимом	260	0.01

ЗАКЛЮЧЕНИЕ

Получены следующие новые результаты:

1. проведена оценка влияния остаточного магнитного момента на работу алгоритмов демпфирования угловой скорости малых космических аппаратов. Выявлено что наибольшее влияние оказывает остаточный момент на динамику и работу алгоритмов управления МКА;

2. разработан алгоритм управления трехосной ориентацией малого космического аппарата при помощи электромагнитных исполнительных органов на основе пропорциональнодифференциального (ПД) – регулятора с учетом компенсации остаточного магнитного момента;

3. разработан алгоритм управления трехосной ориентацией малого космического аппарата при помощи электромагнитных исполнительных органов на основе теории управления со скользящим режимом с учетом компенсации остаточного магнитного момента.

ПУБЛИКАЦИИ ПО ТЕМЕ ИССЛЕДОВАНИЯ

- 1. З.Б. Ракишева, Н.Б. Калиева. Некоторые алгоритмы магнитной системы управления ориентацией малого космического аппарата. Вестник КазНПУ им. Абая, Серия "Физико-математические науки" 2014. №2(46). С. 183 188
- 2. Ракишева З.Б., Калиева Н.Б., Смайлханова С.Н. Ғарыштық аппарат қозғалысының басқару жүйесін орнықтылыққа зерттеу. Материалы международной научной конференции «Актуальные проблемы механики и машиностроения» Алматы, 2014. С. 150 156.
- 3. З.Б. Ракишева, Н.Б. Калиева. Влияние остаточного магнитного момента на действие различных модификаций алгоритма B-dot // Вестник КазНТУ. №5 (111). Алматы, 2015. С. 530 535
- 4. З.Б. Ракишева, Н.Б. Калиева, А.С. Тағабаев. Ғарыш аппаратының эклиптикалық координаталарын және жылдамдығын TLE элементтері арқылы анықтау // Материалы II международной научно-технической конференции студентов, магистрантов и молодых ученых «Творчество молодых инновационному развитию Казахстана». Усть-Каменогорск, 2016. часть 4. С. 191 195
- 5. З.Б. Ракишева, М. Елгондина, Н.Б. Калиева. Магнитная система управления ориентацией для малого космического аппарата // Материалы международной научно-практической конференции «Актуальные задачи математического моделирования и информационных технологий». Россия, Сочи. 22 31мая 2016 г. С. 42 44.
- 6. Ж.М. Омиржанова, М. Елгондина, Н.Б. Калиева, Г.Е. Ибраев Исследование зависимости вращения спутника переменной массы и размера от магнитных моментов // Вестник КазНПУ. №2 (54). Алматы, 2016. С. 122 128.
- 7. Nazgul Kaliyeva, Zaure Rakisheva Stabilization of the small spacecraft with electromagnetic actuator in the presence of a residual magnetic moment. Contemporary Engineering Sciences, Vol. 9, 2016, no. 15, 705 -712. <u>http://dx.doi.org/10.12988/ces.2016.6416</u>. (индексируется БД Scopus)
- 8. З.Б. Ракишева, Н.Б. Калиева. Кіші ғарыш аппаратының массалар центрі төңірегіндегі айналмалы қозғалысын магниттік жүйе арқылы үшөсті басқару // Материалы III международной научно-практической конференции «Математическое моделирование механических систем и физических процессов». Алматы, 2016. С. 61 63

Спасибо за внимание !